Student Name
Chamberlain University
MATH-225 Statistical Reasoning for the Health Sciences
Prof. Name:
Date
Heading | Details |
---|---|
Independent Variables in Regression Analysis | Independent variables such as total cholesterol (mg/dL), age, and gender can be used to analyze BMI. These variables provide insight into BMI, which does not differentiate between fat, muscle, or bone mass (Centers for Disease Control and Prevention, 2015). |
Role of Regression Analysis | Regression analysis explains the relationship between BMI (dependent variable) and predictor variables. Including multiple independent variables gives a comprehensive view of factors influencing BMI (Creswell & Creswell, 2018). |
Key Statistic: Correlation Coefficient | The correlation coefficient determines the strength and direction of the relationship between BMI and independent variables. Tools like Excel or SPSS can calculate this statistic, identifying whether the association is strong, weak, positive, or negative (Holmes, Illowsky, & Dean, 2018). |
Centers for Disease Control and Prevention. (2015). Body mass index: considerations for practitioners. Retrieved from https://www.cdc.gov/obesity/downloads/bmiforpactitioners.pdf
Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). Thousand Oaks, CA: Sage.
Holmes, A., Illowsky, B., & Dean, S. (2018). Introductory business statistics. Houston, TX: OpenStax.
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Post Categories
Tags